Paleogene Events in the sedimentary record of outcrops in Salzburg and eastern Bavaria

H. Egger1, F. Rögl2

Exkursion 04
2012 - 09 - 16
TABLE OF CONTENTS

Editorial note .. 4
Introduction .. 4
Stop 1 Untersberg Section near Fürstenbrunn ... 11
Stop 2 Anthering Section ... 17
Stop 3 Frauengrube Section near St. Pankraz ... 25
Stop 4 Wimmern Section .. 28
References .. 41

1) Geological Survey of Austria, Neulinggasse 38, A-1030 Vienna hans.egger@geologie.ac.at
2) Museum of Natural History, Burgring 7, A-1010 Vienna fred.roegl@nhm-wien.ac.at
FIGURES

Fig. 1 Schematic paleogeographic map of the NW Tethys and neighbouring areas showing the location of the Alpine environmental areas in the early Paleogene (simplified and modified after Stampfli et al., 1998). ... 4
Fig. 2 Correlation and paleogeographic position of Paleogene sections across the Penninic Basin. ... 5
Fig. 3 Transgressive contact between the Gerhardsreit Formation (Maastrichtian) and glauconitic sandstone of the Adelholzen Formation (Lutetian) at the Wimmern section (Bavaria). ... 6
Fig. 4 Map showing the plate tectonic situation at 54 Ma (rotated present day shore lines), the rotated locations where layer +19 was found (solid spheres and locality names), and elliptical isopachs of layer +19 (grey contours, tephra thicknesses in mm) with assumed NAIP-source (star) at one focus. ... 8
Fig. 5 Location of Gosau deposits in the Eastern Alps .. 9
Fig. 6 Route map for the field trip .. 10
Fig. 7 Photograph of the outcrop 1a at Untersberg showing the CIE-interval .. 11
Fig. 8 Carbon isotope values, bulk rock mineralogy, and composition of clay mineral assemblages across the Paleocene–Eocene boundary. .. 12
Fig. 9 Percentages of Discoaster multiradiatus, Discoaster falcatus, and Rhomboaster cuspis in the calcareous nannoplankton assemblages and calcium carbonate percentages at the top of the CIE-interval (scale bar represents 3 µm and is valid for all photographs). .. 13
Fig. 10 Magma composition of different ash-layers by means of immobile element distribution (after Winchester and Floyd, 1977). For comparison, sample +19 from the Danish Fur Formation and sample X1, from the Austrian Anthering Formation, are plotted (from Egger et al., 2000). .. 16
Fig. 11 Location of outcrops and biostratigraphy of the Anthering section .. 17
Fig. 12 Photograph showing outcrop B ... 18
Fig. 13 Flute casts at outcrop B .. 18
Fig. 14 Lithologic logs of outcrops at Anthering .. 19
Fig. 15 Log of outcrop E showing positions of bentonites and immobile element concentrations of bentonites 20
Fig. 16 Lithostratigraphy, percentages of redeposited Cretaceous nannoplankton, and stable isotope record of oxygen and carbon across the CIE-interval at Anthering. A. spp. percentages of the genus Apectodinium in the dinoflagellate assemblage (Egger et al., 2009) .. 21
Fig. 17 Apectodinium augustum. Left specimen from Anthering, outcrop j. Right specimen from the CIE-interval in Denmark (Viborg Borehole). .. 22
Fig. 18 Lithologic log of the Paleogene of the South Helvetic succession in Salzburg ... 25
Fig. 19 Image of a thin section of rhodolithic limestone with Discocyclus sp. (Fackelgraben Member) .. 26
Fig. 20 Photograph of the type locality of the Frauentgrube Member (Note the erosional unconformity between the Fackelgraben Member (left) and the Frauentgrube Member (right)) .. 27
Fig. 21 Location of the Wimmern outcrop .. 28
Fig. 22 Photograph of the Wimmern outcrop .. 29
Fig. 23 Sketch map of the area investigated. Numbers indicate the most important creek sections mentioned in the text. .. 30
Fig. 24 Composite log of the Achthal Formation in the type area .. 31
Fig. 25 Calcareous nannoplankton from the Goppling section. .. 32
Fig. 26 Dinoflagellate taxa from the Goppling section. The species name is followed by sample location and England Finder coordinates (for localization of the specimen on the slide). Scale is 20 µm. 1) Dinogymnium acuminatum - TS11/09/a, O24; 2) Dinogymnium sp., TS11/09/a, F7/3; 3) Cerodinium sp, TS11/09/a, X16/3; 4) Trithyrodictyum suspicatum - TS8/09/a, B24/2; 5) Palynodinium grallator - TS13/09/a, C40; 6) Palynodinium grallator - TS11/09/a, W36; 7) Palynodinium minus - TS13/09/b, Y27; 8) Areoligera volata - Ach.2/09/a, G12; 9) Areoligera coronata - Ach.1/09/a, A3; 10) Areoligera gippingensis - TS11/09/a, X34; 11) Pterodinium cingulatum subsp. cingulatum - TS12/09/a, W33/4; 12 and 13) Pterodinium aliferum - TS12/09/a, D6/1. .. 34
Fig. 28 Ichnofossils from the Thanetian (creek 3) and Ypresian (creek 4) of the Goppling section 1) Ophiomorpha annulata (O) and ? Protopalectodyctyon isp. – creek 3; 2) Paledictyon maus. - creek 4; 3) Scolicia prisca – creek 4; 4) ?Scolicia strozii – creek 3; 5) Thalassinoides isp. – creek 3; 6) Thalassinoides isp. – creek 3. .. 37
Fig. 29 Slope basin model for the deposition of the Achthal Formation. ... 39

TABLES

Tab. 1 Planktonic foraminifera of the Untersberg section ... 14
Tab. 2 Distribution of dinoflagellate taxa in the Goppling section. The arrangement of taxa is according to the first occurrence and alphabetic order. Key dinoflagellate species are shaded. .. 33
Editorial note
With the exception of Stop 4, this guidebook is a short version of the field trip guidebook for the “Climate and Biota of the Early Paleogene” Conference, held in Salzburg in June 2011. Bibliographic reference to this publication: Egger, H. (ed): Climate and Biota of the Early Paleogene, Field-Trip Guidebook, 5-8 June, Salzburg, Austria. Berichte der Geologischen Bundesanstalt. 86, 132pp. This publication can be downloaded for free from the webpage of the Geological Survey of Austria. The help of Markus Kogler in preparing the figures is gratefully acknowledged.

Introduction
The Eastern Alps, a 500 km long segment of the Alpine fold-and-thrust belt, originate from the northwestern Tethyan realm. The modern structure of the Eastern Alps is the result of the convergence between the European and the Adriatic Plates (Fig. 1). Separation of these plates started by oblique rifting and spreading in the Permian and Triassic and continued during the Jurassic by the formation of oceanic lithosphere in the Penninic basin. The structural evolution of this basin was linked to the opening of the North Atlantic (e.g. Frisch, 1979; Stampfli et al., 2002). Due to the presence of lower Eocene sedimentary rocks in the Penninic units, it is clear that the final closure of the Penninic Ocean did not occur before the Eocene (see Neubauer et al., 2000 for a review).

As a result of the oblique collision of the European and Adriatic plates the elimination of the Penninic Ocean started in the West and prograded continuously to the East. E.g., thrusting in the Eastern Alps started at latest in the Middle Eocene whereas in the adjacent Western Carpathians the onset of thrust formation was around the Eocene-Oligocene boundary (see Decker & Peresson, 1996 for a review). In the Eastern Alps continuing convergence during the Miocene caused lateral tectonic escape of crustal wedges along strike slip faults, which strongly affected the nappe complex of the Eastern Alps. A recent review on the complicated structural development of the Eastern Alps is given by Brückl et al. (2010).

The northern rim of the Eastern Alps consists of detached Jurassic to Paleogene deposits, which tectonically overlie Oligocene to lower Miocene Molasse sediments. From north to south these thrust units originate from (1) the southern shelf of the European Plate (Helvetic nappe complex), (2) the adjacent passive continental margin (Ultrahelvetic nappe complex), (3) the abyssal Penninic Basin (Rhenodanubian nappe complex) and (4) the bathyal slope of the Adriatic Plate (nappe complex of the Northern Calcareous Alps). Thrusting and wrenching from the Upper Eocene on destroyed the original configuration of these depositional areas and, therefore, the original palinspastic distance between the sedimentary environments of the studied sections is not known. During our field trip, Paleogene sections along a north-south transect within these four nappe complexes will be visited.

![Fig. 1 Schematic paleogeographic map of the NW Tethys and neighbouring areas showing the location of the Alpine environmental areas in the early Paleogene (simplified and modified after Stampfli et al., 1998).](image-url)
Fig. 2 Correlation and paleogeographic position of Paleogene sections across the Penninic Basin

The shallow water sedimentary record of the Helvetic shelf is punctuated by a number of stratigraphic gaps, which become more pronounced in direction to the coast of the European continent in the north. So, in the North-Helvetic realm, Paleocene deposits are absent because there the basal Lutetian (calcareous nannoplankton Sub-Zone NP15a) of the Adelholzen beds (STOP 4) with an erosional unconformity overlies the Maastrichtian of the Gerhartsreith Formation (Fig. 3). The Adelholzen Beds (Schathäutl, 1846) are an equivalent of the Bürgen Formation in Switzerland (Schwerd, 2008) where an equivalent hiatus between the Cretaceous and the Eocene occurs (Menkveld-Gfellner, 1997). Basinward, this main hiatus is less extended and comprises only the uppermost Paleocene (upper part of Zone NP9) and the lowermost Eocene (Zones NP10 and NP 11 - Egger et
al., 2009) in the southern part of the Helvetic shelf (Frauengrube section – STOP 3). A tectonically disturbed but continuous record exists across the K/Pg-boundary of the South-Helvetic domain (Kuhn & Weidich, 1987).

Towards south, the Helvetic shelf gradually passed into the Ultrahelvetic continental slope. Depending on the paleodepth at this slope, the pelitic rocks of the Ultrahelvetic unit display varying contents of carbonate. Since Prey (1952), these pelitic deposits were assembled to the informal lithostratigraphic unit Buntmergelserie, which was thought to comprise the Albian to upper Eocene. However, only very few small outcrops of Paleocene to middle Eocene have been recognized and most of them have unclear tectonic positions due to a strong tectonic overprint.

Recently, Egger & Mohamed (2010) recognized a stratigraphic contact between upper Maastrichtian (calcareous nannoplankton Zone CC25) Buntmergelserie and the uppermost Maastrichtian (CC26) to lowermost Eocene (NP11, NP12?) turbidite succession of the Achthal Formation at the Goppling section (STOP 5). This 350 thick formation is interpreted as the infill of a slope basin, which formed as a result of block faulting of the continental margin. Deposition took place partly below the planktonic foraminiferal lysocline and partly below the CCD. Sedimentary successions rich in turbidites other than the Achthal Formation, are known from a number of Ultrahelvetic sites. In Vorarlberg (westernmost Austria), grey turbidites and hemipelagic marlstone (Kehlegg beds) were assigned to the Ultrahelvetic unit by Oberhauser (1991). The base of the Kehlegg beds is situated around the K/Pg-boundary. The unit comprises the entire Paleocene (Egger, unpublished) and its top is tectonically truncated by an overthrust. In a more southerly paleogeographic position on the slope, the deep-water system of the Feuerstätt thrust unit was deposited, exposed in Vorarlberg and southwestern Germany (see Schwed and Risch, 1983 for a review). There, turbidites and intervening red claystone (“Rote Gschlief-Schichten”) of Paleocene and early Eocene age may represent the in-fills of adjacent slope basins at different paleodepths on the continental slope (Weidich and Schwed, 1987; Schwed, 1996). Farther to the east, in Lower Austria, Paleocene to Eocene turbidite successions associated with Buntmergelserie are reported by Prey (1957).

In summary, the style of early Paleogene turbidite sedimentation on the European continental margin seen at the Goppling section was not a unique phenomenon. Rather, it occurred at several sites along the strike of the Ultrahelvetic thrust unit in the Eastern Alps. Nevertheless, it is unlikely that these deposits originated from the same basin. Instead, a number of small sub-basins can be assumed, which due to the different subsidence histories and their different bathymetric positions, probably cannot be directly correlated.

The largely synchronous formation of different sub-basins along the strike of the Ultrahelvetic slope points to large-scale tectonic deformation of the continental margin, starting in the late Maastrichtian. The subsidence of intra-slope basins can be related to an extensional tectonic regime. However, for the same period, Nachtmann and Wagner (1987), Wessely (1987), and Ziegler (2002) all document strong intra-plate compressional deformation of the foreland of the Eastern Alps. Together with the data from the Goppling section and other
Ultrahelvetic sites, this implies that the southern European plate was simultaneously affected by extension and compression. Here, this style of deformation is typical for anastomosing strike-slip fault zones in convergent settings (e.g. Crowell, 1974).

The well-established contractional deformation event, which affected the European plate in Late Cretaceous times, was explained by two different models. In the first one, strike-slip faulting was driven by the oblique convergence of the European and African plates resulting in a dextral transpressional tectonic regime subsequently to the onset of the collision (Ziegler, 1987). In the second model, this deformation is seen as the result of an important change in relative motion between the European and African plates causing pinching of Europe’s lithosphere between Africa and Baltica (Kley and Voigt, 2008). This model explains better than the collision model the uniform N to NE intraplate shortening of the European plate during the Late Cretaceous event and is also consistent with the NE-SW trending strike-slip faults, which affected the European margin and led to the formation of slope-basins.

Syndepositional faulting and the associated alteration in margin topography, changed sediment dispersal and accumulation not only on the slope but also in the adjacent “Rhenodanubian Flysch” of the Penninic basin. There, a dearth of turbidite sedimentation (=Strubach-Tonstein) has been recognized in the Paleocene of the Rhenodanubian Group (Egger, 1995). This was interpreted to be the result tectonic activity that caused a cut-off of the basin from its source areas (Egger et al., 2002). More precisely, the data presented suggest that the above mentioned structurally controlled slope-basins acted as sediment traps and prevented turbidity current by-pass to the main basin.

The Rhenodanubian Flyschzone constitutes an imbricated nappe complex trending parallel to the northern margin of the Eastern Alps. The deep-water sediments of Barremian to Ypresian age were formalized as Rhenodanubian Group (RG) by Egger and Schwert (2008). The RG consists primarily of silicilastic and calcareous turbidites but thin, hemipelagic claystone layers occur in all formations of the RG and indicate a deposition below the local calcite compensation depth, probably at palaeodeepth >3000 m (Butt, 1981; Hesse, 1975). Paleocurrents and the pattern of sedimentation suggest that the deposition occurred on a flat, elongate, weakly inclined abyssal basin plain (Hesse, 1982, 1995). Compared to other turbidite basins, the depositional area of the Rhenodanubian Group is characterized by low sedimentation rates. An average sedimentation rate for the Cretaceous basin fill, incorporating both turbidites and hemipelagites, of only 25 mm kyr-1 has been calculated (Egger & Schwert, 2008).

Lithostratigraphic classification of the Paleogene deposits of the Rhenodanubian Flysch has been proposed by Egger (1995) who distinguished three distinct lithological units in the area of Salzburg. In the upper Maastrichtian and Danian the Acharting Member of the Altlengbach Formation is characterized by thin- to medium-bedded turbidites, which display base-truncated as well as complete Bouma sequences. Usually the upper part of the Bouma sequences consist of medium-grey clayey marl which represents c. 35 % of this member whereas the percentage of intervening green coloured hemipelagic shale layers is less than 15 %. A distinct feature of this turbidite facies is the intercalation of thick-bedded and coarse grained sandstones with high amounts of mica and quartz. These are marker beds for mapping the Altlengbach Formation. Calcareous nannoplankton zone NP3 was found in a sequence of very thin-bedded and fine-grained turbidites. Further up-section, hemipelagic claystone (Strubach Tonstein) becomes the dominant rock-type suggesting starvation of turbidite sedimentation. This claystone-rich interval is regarded as part of the Acharting Member.

The lower boundary of the 50 m thick Strubach Tonstein is within Zone NP3. New increased input of turbiditic material started within nanozone NP8 and continued until the upper part of zone NP10. In Zone NP8 and in the lower part of Zone NP9 the facies is very similar to that of the Danian part. In the upper part of zone NP9 graded silties marls of the Anthering Formation become the predominant rock type at the expense of sandstones and siltstones. The base of the Anthering Formation is at the P/E-boundary, which is characterized by the common occurrence of hemipelagic claystone.

The rate of hemipelagic sedimentation in the Paleocene can be calculated using the Strubach Tonstein, which was deposited during a period of about 6 my between calcreous nannoplankton Zones NP3 and NP8. Excluding the turbidites the rate of hemipelagic sedimentation has been calculated as ca. 8 mmky-1. Similar values (7 mmky-1 resp. 9 mmky-1) were assessed for the middle and upper part of Zone NP10, whereas a hemipelagic sedimentation rate of 49 mmky-1 has been calculated (Egger & Schwert, 2002). More precisely, the data presented suggest that the above mentioned structurally controlled slope-basins acted as sediment traps and prevented turbidity current by-pass to the main basin.

In general, the input of terrestrial derived material into the basins increases during episodes of low sea-level as a result of enhanced topographical relief. In the Anthering section, the thickest turbidites of the Thanetian and Ypresian occur in the uppermost 13 m of the Thanetian (Egger et al., 2009). This suggests an episode of massive hinterland erosion, indicating a sea-level drop just prior to the onset of the CIE. This is consistent with data from the Atlantic region (Heilmann-Clausen, 1995; Knox, 1998; Steurbaut et al., 2003; Pujalte and Schmitz, 2006; Schmitz and Pujalte, 2007). The synchronicity of this sea-level drop in the Atlantic and Tethys regions indicates a eustatic fluctuation. Starting with the onset of the CIE, mainly fine-grained suspended material came into the basin and caused a strong increase in hemipelagic sedimentation rates. Such an increase associated with decreasing grain-sizes has been reported from P/E-boundary sections elsewhere and interpreted as an effect of a climate change at the level of the CIE, affecting the hydrological cycle and erosion (Schmitz et al., 2001).

In the lowermost Eocene of the eastern Alps (sub-Zone NP10a) twenty-three layers of altered volcanic ash (bentonites) originating from the North Atlantic Igneous Province have been recorded in lower Eocene deposits (calcareous nanoplankton Sub-Zone NP10a – STOP 2) at Anthering, about 1,900 km away from the source area (Egger et al., 2000). The Austiran bentonites are distal equivalents of the “main ash-phase” in Denmark and the North Sea basin (Fig. 4). The total eruption volume of this series has been calculated as 21,000 km3, which...
occurred in 600,000 years (Egger and Brückl, 2006). The most powerful single eruption of this series took place 54.0 million years ago (Ma) and ejected ca. 1,200 km³ of ash material which makes it one of the largest pyroclastic eruptions in geological history. The clustering of eruptions must have significantly affected the incoming solar radiation in the early Eocene by the continuous production of stratospheric dust and aerosol clouds. This hypothesis is corroborated by oxygen isotope values which indicate a global decrease of sea surface temperatures between 1–2°C during this major phase of explosive volcanism.

Fig. 4 Map showing the plate tectonic situation at 54 Ma (rotated present day shore lines), the rotated locations where layer +19 was found (solid spheres and locality names), and elliptical isopachs of layer +19 (grey contours, tephra thicknesses in mm) with assumed NAIP-source (star) at one focus.

Equivalents of these bentonites were found also in the sedimentary record of the northern Adriatic Plate within the succession of the Northern Calcareous Alps at Untersberg (STOP 1, Egger et al., 1995) and Gams (Egger et al., 2004). The Cretaceous to Paleogene deposits of the Adriatic Plate lithostratigraphically are formalized as Gosau Group. This group comprises mainly siliciclastic and mixed siliciclastic-carbonate strata deposited after Early Cretaceous thrusting. The Gosau Group of the Northern Calcareous Alps can be divided into two parts – a lower part consisting of terrestrial and shallow-water sediments, including bauxites, coal seams, rudist biostromes, and several key stratigraphic horizons rich in ammonites and inoceramids (Lower Gosau Subgroup, Turonian to lower Campanian), and an upper part, comprising deep-water marlstone, claystone and turbidites (Upper Gosau Subgroup, upper Campanian to Pribonian). Deposition of the Gosau Group was the result of transtension, followed by rapid subsidence into deep-water environments due to subduction and tectonic erosion at the front of the Adriatic Plate (Wagreich, 1993).
The Cretaceous/Paleogene-boundary has been studied in five sections of the Nierental Formation of the Upper Gosau Subgroup of the Northern Calcareous Alps (Fig. 5). The first K/Pg boundary in the region was discovered in the Wasserfallgraben section of the Lattengebirge in Bavaria (Herm et al. 1981). Perch-Nielsen et al. (1982) reported on biostratigraphical and geochemical results, and Graup and Spettel (1989) measured bulk Ir contents of 4-5 ppb in the boundary clay from this section. The second K/Pg boundary site was identified in the Elendgraben section near the village of Gosau in Salzburg (Preisinger et al. 1986; Stradner et al. 1987). The boundary is marked by a 2-4 mm thick yellowish clay layer, which contains up to 14.5 ppb iridium. The third K/Pg boundary site was recognized in the Knappengraben section at Gams (Stradner et al. 1987). Again, the boundary clay is of light yellow color and contains up to 7 ppb iridium. Lahodynsky (1988b) studied the lithology of the Knappengraben and Elendgraben sections and interpreted their sedimentological and geochemical features as the result of extensive volcanic eruptions. Recently, Grachev et al. (2005, 2007, 2008) followed this interpretation. The fourth K/Pg boundary site has been described at the Rotwandgraben section also near the village of Gosau, about 2.5 km to the southeast of the Elendgraben section (Peryt et al. 1993, 1997). The maximum Ir content in the boundary clay has been determined to be 7 ppb.

In the Northern Calcareous Alps, Paleocene/Eocene (P/E)-boundary sections were studied at Untersberg near Salzburg (Egger et al., 2005) and Gams in Styria (Egger et al., 2009; Wagreich et al., 2011). At the Untersberg section the P/E-boundary is characterized by grey and red claystone intercalated into the dominating marlstone of the succession. At its top, the claystone displays a gradual increase in calcium carbonate contents. This transition zone from the red claystone to the overlying grey marlstone indicates a deposition within the lysocline. The gradual change of carbonate content within the transition zones suggests a slow shift of the level of the lysocline and CCD at the end of the CIE and has been described also from other sections (e.g. Zachos et al., 2005).

Like on the Helvetic shelf in the north of the Penninic basin (see above), a major stratigraphic gap exists in the sedimentary record of the shelf of the Adriatic plate at the southern rim of the basin. Lower Eocene deposits rest with an erosional unconformity on Upper Campanian marlstone of the Tranolithus phacelosus Zone (Sub-Zone CC23a). In the Pemberger quarry (unfortunately, this outcrop was destroyed in 2011), from the base of the marine deposits Assilina placentalia, Nummulites bursigalensis kuepperi, Nummulites increscens, and Nummulites bearnensis were described (Schaub, 1981; Hillebrandt, 1993). This fauna is indicative of the lower part of shallow benthic zone SBZ10, which has been correlated with calcareous nannoplankton zone NP12 (Serra-Kiel et al. 1998). Due to their similar stratigraphic positions, Egger et al. (2009) assumed that the Ypresian transgressions at the shelves of the European and Adriatic Plates originated from the same eustatic event, which was the highstand of the TA2 supercycle in the global sea-level curve (Haq et al., 1988). At the Adriatic Plate, at the base of the marine transgression, black shales occur containing a rich and well preserved tropical palynoflora, indicating Nypa-dominated mangrove type forests, which reflect the early Eocene climate optimum (Hofmann et al., 2011). The onset of this episode of tropical climate was near the top of magnetic Chron 24, which coincides with the NP11/NP12 zonal boundary (Collinson, 2000; Gradstein et al., 2004).

The youngest deposits of the Gosau Group at Krappfeld are of Lutetian age. Hillebrandt (1993) reported both Nummulites hilarionis and Nummulites boussaci, which indicate shallow benthic zone SBZ14, and Nummulites millecaput, which is indicative of shallow benthic zone SBZ15. These foraminiferal zones can be correlated with the upper part of calcareous nannoplankton Zone NP15 and the lower part of Zone NP16 (Serra-Kiel et al., 1998).
Fig. 6 Route map for the field trip
Stop 1 Untersberg Section near Fürstenbrunn
Hans Egger, Fred Rögl

Topic: Paleocene/Eocene-boundary and lower Eocene bentonites section in bathyal marlstone and claystone

Tectonic unit: Northern Calcareous Alps (Adriatic Plate)

Lithostratigraphic unit: Gosau Group, Nierental Formation

Chronostratigraphic units: Upper Paleocene to Lower Eocene

Biostratigraphy: Calcareous Nannoplankton Zones NP9 and NP10a; Planktonic Foraminifera Zones P5 to E3

Location: Tributary of the Kühlbach near Fürstenbrunn

Coordinates: 47° 44´ 19" N, 012° 59´ 04" E

References: Egger et al. (2005), Egger & Brückl (2006), Hillebrandt (1962), Hagn (1982)

Stop 1a: Paleocene/Eocene-boundary

From the bus stop it is a 10 minutes downhill walk through the forest (no trail!) to reach the outcrops, which are located along the course of a creek. Estimated duration of the stop is 1.5 hours.

The Paleogene deposits of the Untersberg region were examined by von Hillebrandt (1962 and in Hagn, 1982. The more than 1000 m thick Paleogene succession of the Untersberg area consists predominantly of marlstone displaying carbonate contents between 40wt% and 50wt%. Abundant planktonic foraminifera and calcareous nannoplankton are the main source of the carbonate. Von Hillebrandt (1962) already recognized the importance of the benthic foraminiferal extinction at the end of the Paleocene and Egger et al. (2005) re-examined this outcrop. However, at that time the exposure was worse and only part of the CIE-interval was outcropping. In 2010, a flood event due to torrential rain significantly improved the outcrop situation and revealed also minor faults along the dipping planes.

![Fig. 7 Photograph of the outcrop 1a at Untersberg showing the CIE-interval](image)

At the base of the new outcrop (Fig.1) grey marlstone shows a sharp contact to grey claystone, which is overlain by red claystone. The claystone at the P/E-boundary indicates a deposition below the CCD. Excluding the carbonate content, the mean percentages of the siliciclastic components are almost identical below and above the CIE-interval: 16.3% quartz and feldspar and 83.7% clay minerals from the interval above the CIE and 16.6% quartz and feldspar and 83.4% clay minerals below the CIE. Within the CIE-interval, however, the mean percentage of quartz and feldspar is 24.8%, which is equivalent to an increase of 49% in relation to the other parts of the section.
The clay mineral assemblage at Untersberg is strongly dominated by smectite (72wt%), followed by illite (18wt%), kaolinite (6wt%) and chlorite (4wt%). The abundance of smectite throughout the studied section, together with the absence of mixed-layers, indicates that the rocks of the Untersberg section were not affected by deep-burial diagenesis. Consequently, diagenetic effects on the composition of clay mineral assemblages can be ruled out. At its top, this claystone displays a gradual increase in calcium carbonate contents (Fig. 3) already documented by Egger et al. (2005). This transition zone to the overlying grey marlstone indicates a deposition within the lysocline, which is the water depth where carbonate dissolution rates are greatly accelerated (Berger, 1970). The gradual change of carbonate content within the transition zones suggests a slow shift of the level of the lysocline and CCD at the end of the CIE and has been described also from sections elsewhere (Zachos et al., 2005).
Calcareous nannofossils were found in the marlstone and in the transition zones (marly claystone) between the marlstone and the shale. They are abundant (> 30 specimens per field of view) in the samples from the marlstone, whereas their abundance is low (< 10 specimens per field of view) in the samples from the transition zones. The preservation of nannofossils is moderate in the marlstone and poor in the transition zone according to the classification of Steinmetz (1979). In the moderately preserved samples the majority of the specimens are slightly etched but all taxa can be easily identified and diversity is about 16 species per sample on average. In the poorly preserved samples, the majority of specimens are deeply etched, identification of taxa is difficult and the diversity is only about 6 species per sample.

Reworked specimens are present in the marlstone samples, with rare Cretaceous species appearing (less than 1% of the nannofossil assemblage). Reworking has affected mainly Upper Cretaceous deposits, indicated by the occurrences of Micula decussata, Prediscosphaera cretacea, Lucianorhabdus cayeuxii, Broinsonia parca, Ceratolithoides aculeus, Uniplanarius trifidus and Arkhangelskiella cymbiformis. In one sample (M3b) typical Lower Cretaceous species (Micrantolithus hoschulzii and Nannoconus steinmannii) were also found. However, the relatively common Watznaueria barnesae specimens in most samples may in part also originate from Lower Cretaceous deposits, as this species is abundant throughout the entire Cretaceous.

The Paleogene nannoflora is dominated by Coccolithus pelagicus, which usually accounts for about 90% of the nannoplankton assemblages, with the exception of the poorly preserved assemblages of the CIE-interval. Discoaster multiradiatus, the zonal marker of NP9, is another common species and the only species occurring in all samples. Species of the stratigraphically important genus Fasciculithus are rare in the Untersberg section.
except in the samples from below the CIE. Scapholithus apertus is the only species which becomes extinct at the Palaeocene-Eocene boundary of the Untersberg section. The first specimens of the genus Rhomboaster occur just below the base of the CIE. There, short-armed specimens of Rhomboaster cuspis are exceedingly rare. In contrast, in the samples from the top of the CIE-interval Rhomboaster cuspis is the dominant species (up to 49% of the assemblages) followed by Discoaster multiradiatus and Discoaster araneus. In other Tethyan sections Discoaster aranios (Bybell and Self-Trail, 1994) co-occurs with Discoaster araneus; however, this species has not been found at Untersberg. Coccoliths are absent or extremely rare in this CIE-assemblage. The unusual composition of the nanoplankton assemblage of the marly claystone at the top of the CIE-interval is an effect of carbonate dissolution because, synchronously with increasing carbonate content, the calcareous nanoplankton shows better preservation and a higher diversity (Fig. 3). The species diversity in nanoplankton assemblages is, to large extent, controlled by selective dissolution of skeletal elements. Bukry (1971) recognized that Discoaster is the most dissolution-resistant genus among the Cenozoic genera, followed by the genus Coccolithus. At Untersberg, the high percentages of Rhomboaster in the transition zone assemblages are most probably an effect of selective dissolution, indicating that Rhomboaster has a similar resistance to dissolution as Discoaster.

Foraminifera

Planktonic and benthic foraminifera are very abundant in most of the studied samples, although, as a result of carbonate dissolution, their preservation is poor across the CIE-interval. There, the assemblages are strongly dominated by agglutinating taxa. A specific determination was often difficult to make as many planktonic foraminifera specimens are corroded or deformed. For this reason no quantitative analysis of the foraminifera fauna was conducted, despite recording 191 different taxa in 19 samples, excluding species reworked from the Upper Cretaceous and Lower Paleocene (mainly Danian). The distribution of planktonic foraminifera is given in Tab. 1. The planktonic foraminiferal biozonation follows the criteria of Berggren & Pearson (2005).

Tab. 1 Planktonic foraminifera of the Untersberg section

<table>
<thead>
<tr>
<th>Zone</th>
<th>Recognition variable</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- Zone P5 (Morozovella velascoensis Partial-range Zone), the uppermost zone in the Paleocene, is defined by the highest occurrence (HO) of Globanomalina pseudomenardii and the lowest occurrence (LO) of Acarinina sibaiyaensis. At Untersberg, only reworked specimens of G. pseudomenardii occur, whereas A. sibaiyaensis is absent and has not been found in Eastern Alpine sections till now. The assignment of the lowermost part of the studied section to Zone P5 is due to the occurrence of Morozovella subbotinae, which has a stratigraphic range from Zone P5 to Zone E5. In this part of the section also M. aequa and M. gracilis occur.
Due to the scarcity of planktonic foraminifera in the claystone of the CIE-interval no zonal attribution was possible. In the overlying marlstone (sample MU 19/97) Pseudohastigerina wilcoxensis was found, indicating Zone E2 (Pseudohastigerina wilcoxensis/Morozoellavelascoensis Concurrent-range Zone). This zone is defined as the interval between the lower occurrence (LO) of P. wilcoxensis and the highest occurrence (HO) of M. velascoensis. M. velascoensis has its HO in sample MU 10d/97. Further up-section, rare specimens of this species (sample MU 6/97) are considered to be reworked. The LO of Morozovella edgari is used to assign the highest part of the section to Zone E3 (Morozoellavarginodentata Partial-range Zone). This zone is defined by the HO of M. velascoensis and the LO of M. formosa, however, the latter species does not occur in our samples.

The distribution of calcareous benthic foraminifera is similar to that of other deep-water sections (see Thomas, 1998, for a review). Gavelinellacf. beccariiformis has its HO at the onset of the CIE. The post-extinction calcareous benthic foraminifera assemblages are dominated by Nuttalides trumpeyii (very small specimens), Abyssinamina poagi, Anomalinoideen unguiculata, A. praeacutus, Oridorsalis spp. and a number of pleurostomellids (e.g. Ellipsoglandulina, Ellipsoidella, Ellipsopolyomphaxina, Nodosarella, Pleurostomella). This assemblage is typical of lower bathyal to abyssal environments (van Morkhoven et al., 1986). For example, Abyssinamina poagi occurs between 1700 m and 4000 m depth, and Oridorsalis lotus indicates a depth of between 800 m and 1900 m. This suggests a palaeodepth of about 2000 m (lower bathyal) for the deposition of Untersberg section.

The agglutinating foraminiferal fauna consists of 68 species, 25 of which (37% of the entire fauna) occur exclusively at the base of the succession and end within the CIE-interval. These species are Ammodiscus cretaceus, Aschemocella carpathica, A. grandis, Bathysiphon? annulatus, Caudammina arenacea, C. excelsa, C. ovulum, Dorothis beloides, Glomospira diffundens, G. glomerata, G. serpens, Haplophragmoides walteri, Hormosinella distans, Hyperammina lineariformis, Karrerulina horrida, Psammotodendron? guidoensis, Psammomorphonella sp., Remesella varians, Rzehakina fissistomatata, Saccamina grantowski, Sillicobathysiphon sp., Subrheophax pseudoscalaris, S. splendidus, Trochamminoides folius, and T. subcoronatus. In the upper part of the succession the typical assemblage with Paratrochamminoides and Trochamminoides has disappeared, but Recurvoides gerochi and R. pseudoregularis are still common. Within the CIE-interval the agglutinated assemblage is dominated by Glomospira spp. Such assemblages, similar to the „Biofacies B“ assemblage or to the „Glomospira event“ occur in the Cretaceous and in the Early Eocene of the North Atlantic and Tethys (comp. Kuhn et al., 1989; Kaminski et al., 1996).

RADIOLARIANS

Occurrences of radiolarians are restricted to the lower part of the section, where they are abundant from samples Mu18a to Mu14 and common in samples Mu2, Mu10, and Mu10d. In the finest grained sieve-residue of sample Mu19, radiolarians are the dominant component. The radiolarians are all spheroidal spumellarians, but are taxonomically indeterminable, since their siliceous skeletons are poorly preserved, due to their replacement by smectite. The abundance of siliceous plankton indicates high nutrient levels in oceanic surface waters in the basal Eocene. A coeval increase in both sedimentation rates and the amounts of terrestrially derived quartz and feldspar suggests that this high primary productivity was the result of enhanced continental run-off. No radiolarians were found further up-section in outcrop 1b.

Stop 1b: Volcanic ash-layers in the Lower Eocene

Within grey marlstone (calcareous nanoplankton sub-Zone NP10a; planktonic foraminifera Zone E3) thirteen light yellowish layers consisting essentially of smectite were found. These 0.2 cm to 3 cm thick bentonite layers are interpreted as volcanic ashes. No bentonites were found in either the lower part of zone NP9 or in the overlying sub-zone NP10b, which are exposed in other outcrops of the area. The occurrence of bentonites is therefore exclusively restricted to sub-zone NP10a.

Due to their complete conversion to smectitic clay the original chemical composition of the bentonites must have strongly changed. Consequently, only the immobile elements have been used to assess the composition of the original magma (Winchester and Floyd, 1977). The immobile element contents of most of these altered ash layers show very little variation: Nb 28.3 ± 4.7 ppm, Zr 259 ± 104 ppm, Y 25.0 ± 9.5 ppm, and TiO2 4.82 ± 0.7 wt.% (see Fig. 10).
Fig. 10 Magma composition of different ash-layers by means of immobile element distribution (after Winchester and Floyd, 1977). For comparison, sample +19 from the Danish Fur Formation and sample X1, from the Austrian Anthering Formation, are plotted (from Egger et al., 2000).

These samples plot in the discrimination diagram of different magma sequences in the field of alkali-basalts. Basaltic ashes are rare in the geological record as the generation of basaltic pyroclastics requires an interaction between basaltic lavas and meteoritic water (see Heister et al., 2001, for a review). Layer M3 (Fig.6) has a totally different composition with highly enriched Nb and Zr, equal Y, and depleted TiO2 compared to the other bentonites. It is the oldest and thickest layer of the ash-series and plots at the border of trachyte and trachyandesite.

The biostratigraphical and geochemical correspondence of these tephras with ashes from the North Sea Basin suggests that these pyroclastic deposits are related to the continental breakup of Europe and Greenland (Egger et al. 2000; Huber et al. 2003; Egger & Brückl, 2006). There, the North Atlantic Igneous Province (NAIP), which is one of the largest basaltic lava accumulations on Earth, formed in the early Paleogene (62–53 Ma), prior to and during the continental break-up between Europe and Greenland (Eldholm & Grue 1994; Ritchie & Hitchen 1996; Ross et al. 2005). Beside voluminous flood basalts and associated igneous intrusions, it produced widespread pyroclastic deposits. From the early Eocene Fur Formation in Denmark more than 200 ash-layers of predominantly basaltic composition have been recorded from this explosive volcanic activity (Knox & Morton 1988; Heister et al. 2001). A numbering system for most of these layers was introduced by Bøggild (1918) and is still in use: The upper, closely spaced layers constitute the “positive series”, with layers numbered +1 to +140 in ascending order. The lower, more widely spaced and generally thinner layers make up the “negative series”, and are numbered -1 to -39 in descending order.

The paroxysm of this volcanic activity, the positive ash–series, consists of tholeiitic ferrobasaltic layers with the exception of layer +19. In the immobile element diagram of Floyd and Winchester (1976) this layer plots at the border between trachyte and trachyandesite, whereas more detailed geochemical investigations indicate a rhyolitic composition of the original magma (Huber et al., 2003; Larsen et al. 2003). Some of the ashes of the positive series have also been found at many other sites in Denmark, the North Sea, England, the Goban Spur southwest of Ireland, and the Bay of Biscay (Knox 1984). Based on detailed multi-stratigraphic and geochemical investigations, the most distal equivalents of layer +19 and 22 other layers have been identified in the Anthering and Untersberg outcrops of the Austrian Alps near Salzburg (Egger et al. 2000 and 2005; Huber et al. 2003).

It can be assumed that the ash-layers of the NAIP form important correlation horizons for lower Eocene deposits in large areas of Europe. In addition to the Austrian outcrops, reports of lower Eocene basaltic ash layers exist from Switzerland and Poland (Winkler et al. 1985; Waskowska-Oliwa & Łesniak 2002), although stratigraphic and geochemical information from these deposits is insufficient for a detailed correlation.
Stop 2 Anthering Section
Hans Egger, Juliane Fenner, Claus Heilmann-Clausen, Fred Rögl, Birger Schmitz
Topics: Paleocene/Eocene-boundary section in a succession of deep-water turbidites and hemipelagites
Tectonic unit: Rhenodanubian Flysch Zone (Penninic Basin)
Lithostratigraphic unit: Rhenodanubian Group, Anthering Formation
Chronostratigraphic units: Upper Paleocene to Lower Eocene
Biostratigraphy: Upper part of calcareous nannoplankton Zone NP9 to upper part of Zone NP10
Location: Outcrops of the Kohlbachgraben near Anthering
Coordinates: 47° 53´ 19" N, 013° 01´ 17" E

From the carpark at the Reinthal inn it is an approx. 10 minutes walk on a small road to the first outcrop of the section, which is located along the course of the Kohlbach creek (no trail!). We examine the section (Fig. 11) walking up-stream from the lower Eocene (NP10) to the uppermost Paleocene (NP9).

The Anthering section is located about 18 km to the north of the Untersberg section as the Anthering and Untersberg sections are separated by the thrust between the Northern Calcareous Alps and the Rhenodanubian Flysch zone, the original palinspastic distance between them must have been much greater than at present. However, reliable data on this distance are lacking.

The 250 m thick upper Paleocene to lower Eocene deposits of the Anthering section, spanning calcareous nannoplankton Zones NP9 and NP10. These sediments comprise the youngest part of the Rhenodanubian Group. This group was deposited on the continental rise to the south of the European plate, which was the main source for the siliciclastic detritus entering the basin. The section is composed of calcareous mud-turbidites with intervening hemipelagic claystone indicating a deposition below the calcite compensation depth. The general sedimentary record of the Anthering-section is typical for an abyssal plain facies. Paleo-water depth estimations by Butt (1981), using foraminifera assemblages, range between 3000 to 5000 m.

In the Eocene part (Anthering Formation) of the section, the turbidite succession is characterized by the predominance of graded silty marlstone, which form about 85% of the succession (Anthering Formation). Occasionally, these turbiditic marlstone layers overlie silty to sandy beds depo–sited from the same turbidity
current. The turbidites usually display base-truncated Bouma-sequences. Turbidites displaying complete Bouma-sequences are very rare. Single turbidite layers can reach thicknesses up to 2 m. The finegrained sand-fraction represents, on average, 5% of the sedimentary rocks and exceptionally up to 10%. The fine-grained (silty-clayey) sediment displays carbonate contents of 29% to 53%. The clay fraction is dominated by smectite.

Common intercalations of hemipelagic claystone occur between the individual mud-turbidite beds. The hemipelagic claystones prove a position of the basin-floor below the local calcite compensation depth. They are devoid of carbonate and display sharp contacts to the turbiditic marls. Usually the claystones show a greenish to greyish colour (0.15wt% organic carbon on average) with a large number of dark spots as indications of intensive bioturbation. Only in the middle part of the section (outcrop E and one layer in outcrop D) darkgrey homogeneous claystones with abundant pyrite frambooids and relatively high contents of organic carbon (0.94wt% on average) occur. These black shales indicate an oxygen deficient environment at the basin floor.
they occur together with bentonite layers, volcanism might have led to eutrophic conditions and high plankton productivity responsible for the anoxic conditions.

Fig. 14 Lithologic logs of outcrops at Anthering
In the lowermost Eocene (Subzone NP10a) at the Antheringen section, 23 layers of altered volcanic ash (bentonites) originating from the North Atlantic Igneous Province have been recorded, about 1,900 km away from the source area (Egger et al., 2000). The Austrian bentonites are between 1mm and 30mm thick and are considered to be distal equivalents of the “main ash-phase” in Denmark and the North Sea basin. Egger & Brückl (2006) have calculated the total eruption volume of this series as 21,000 km3, which occurred in 600,000 years. The most powerful single eruption of this series took place 54.0 million years ago (Ma) and ejected ca. 1,200 km3 of ash material which makes it one of the largest pyroclastic eruptions in geological history. The clustering of eruptions must have significantly affected the incoming solar radiation in the early Eocene by the continuous production of stratospheric dust and aerosol clouds. This hypothesis is corroborated by oxygen isotope values which indicate a global decrease of sea surface temperatures between 1–2°C during this major phase of explosive volcanism.

![Immobile element-concentrations of bentonites from the Antheringen-section](image)

Fig. 15 Log of outcrop E showing positions of bentonites and immobile element concentrations of bentonites

<table>
<thead>
<tr>
<th>Sample (ppm)</th>
<th>Nb</th>
<th>Zr</th>
<th>Y</th>
<th>TiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>146.0</td>
<td>486.0</td>
<td>40.0</td>
<td>7673</td>
</tr>
<tr>
<td>x2</td>
<td>33.0</td>
<td>244.0</td>
<td>15.0</td>
<td>63897</td>
</tr>
<tr>
<td>x4</td>
<td>26.0</td>
<td>238.0</td>
<td>36.0</td>
<td>46700</td>
</tr>
<tr>
<td>x5a</td>
<td>40.0</td>
<td>225.0</td>
<td>22.0</td>
<td>49700</td>
</tr>
<tr>
<td>x6</td>
<td>154.0</td>
<td>490.0</td>
<td>45.0</td>
<td>14000</td>
</tr>
<tr>
<td>x7</td>
<td>26.0</td>
<td>615.0</td>
<td>60.0</td>
<td>37000</td>
</tr>
<tr>
<td>x12</td>
<td>27.0</td>
<td>254.0</td>
<td>28.0</td>
<td>35696</td>
</tr>
<tr>
<td>x13</td>
<td>31.0</td>
<td>213.0</td>
<td>33.0</td>
<td>34028</td>
</tr>
<tr>
<td>x16</td>
<td>30.0</td>
<td>222.0</td>
<td>39.0</td>
<td>32360</td>
</tr>
<tr>
<td>x17</td>
<td>28.0</td>
<td>225.0</td>
<td>22.0</td>
<td>31796</td>
</tr>
<tr>
<td>x18</td>
<td>36.1</td>
<td>258.4</td>
<td>44.4</td>
<td>34432</td>
</tr>
<tr>
<td>x19</td>
<td>33.8</td>
<td>254.4</td>
<td>34.5</td>
<td>34342</td>
</tr>
<tr>
<td>x20</td>
<td>33.6</td>
<td>252.8</td>
<td>51.9</td>
<td>39103</td>
</tr>
<tr>
<td>x21</td>
<td>29.9</td>
<td>218.8</td>
<td>32.8</td>
<td>37819</td>
</tr>
<tr>
<td>x22</td>
<td>35.1</td>
<td>308.0</td>
<td>40.0</td>
<td>39954</td>
</tr>
<tr>
<td>+19(Fur)</td>
<td>121.0</td>
<td>694.0</td>
<td>42.0</td>
<td>11300</td>
</tr>
</tbody>
</table>
The Anthering section displays the global negative carbon isotope excursion (CIE) and the acme of the dinoflagellate species Apectodinium augustum in the upper part of zone NP9 (Heilmann-Clausen and Egger, 1997; Egger et al. 2000; Crouch et al., 2001). The onset of the CIE is characterized by the presence of the thickest hemipelagic layers of the entire Anthering Section. About 45% of the rock is claystone, whereas the average percentage of claystone in the overlying NP10 is only 14%, and even less in the lower part of NP9. The CIE-interval attains a thickness of 15 m, comprising turbidites and hemipelagites. The thickness of the turbidites varies between 0.08 m and 2.25 m, although only the thickest layer exceeds 1 m thickness. The average thickness of the turbidite beds is 0.39 m and sand-grade material, which makes up 2% of this facies, occurs only in the thickest layers. Excluding the turbidites the remaining thickness of hemipelagic claystone is 8.4 m. Using Fe and Ca intensity curves which probably represent precessional cycles, Röhl et al. (2000) calculated that the CIE interval lasted for 170 ky. From this, a hemipelagic sedimentation rate of 49 mm ky⁻¹ has been calculated for the compacted sediment across the CIE.

This value is ca. six times higher than the hemipelagic sedimentation rate in the Paleocene (Egger et al., 2009). The increased rate of hemipelagic sedimentation at the CIE suggests a high input of siliciclastic suspension into the basin. At the level of the CIE clay mineral assemblages of hemipelagic claystone display a distinct increase of smectite and kaolinite at the expense of illite and chlorite (Egger et al., 2002). This indicates a decrease of bedrock erosion in the adjoining land areas. Well-developed smectitic soils with a mixture of kaolinite are mostly restricted to subtropical climates with a well-marked dry season (see Thiry, 2000 for a review). During the rainy season continental erosion of such areas is very pronounced (see van der Zwan, 2002, for a review) and will result in a strong increase in hemipelagic sedimentation rates (Schmitz et al., 2001). Enhanced erosion of land areas around the CIE-interval can also be inferred from the composition of calcareous nannoplankton assemblages. Whereas, in general, reworked Cretaceous species form only 2-3% of the calcareous nannoplankton assemblages of the Anthering section, substantial Cretaceous admixtures are present in many samples from across the CIE (Fig. xx). The oldest nannoplankton assemblage showing a high percentage (>50%) of reworked specimens originates from a turbidite bed 22 m below the onset of the CIE. Three metres above the onset of this geochemical marker, the youngest assemblage with a similar percentage of reworked Cretaceous specimens has been found.

![Figure 16](image_url)
Fig. 16 Lithostratigraphy, percentages of reworked Cretaceous nannoplankton, and stable isotope record of oxygen and carbon across the CIE-interval at Anthering. A. spp. percentages of the genus Apectodinium in the dinoflagellate assemblage (Egger et al., 2009)
Most of the reworked specimens consist of species with a long stratigraphic ranges (Watznaueria barnesae, Micula staurophora, Retecapsa crenulata, Cribrosphaerella ehrenbergii, Effelliithus turriseiffeli). Biostratigraphically important species that were found in all of the counted samples include Broinsonia parca, Arkhangelskiella cymbiformis (small specimens), Calculites obscurus, Lucianorhabdus cayeuxii and Effelliithus eximius whilst Marthasterites furcatus, Epromlitus floralis and Lithastrinus grillii were found only occasionally. This assemblage suggests that predominantly lower to middle Campanian deposits were reworked at the end of the Paleocene. Probably, the erosional area was the North-Helvetic shelf at the southern European Plate where the Middle Eocene is resting with an erosional unconformity on the Upper Cretaceous.

Substantial reworking of the Cretaceous started already in the latest Paleocene. At Anthering, the uppermost 20 m of the Paleocene succession are formed by the thickest turbidites (up to 5 m) of the entire section. The siliciclastic sand-fraction in the turbidites forms around 30 % of the rocks in this part of the section (Altlengbach Formation). This suggests that a sea-level drop took place shortly before the onset of the CIE. This is consistent with data from the Atlantic region (Heilmann-Clausen, 1995; Knox, 1998; Steurbaut et al., 2003; Pujalte and Schmitz, 2006; Schmitz and Pujalte, 2007). The synchronicity of this sea-level drop in the Atlantic and Tethys regions indicates a eustatic fluctuation. Starting with the onset of the CIE, mainly fine-grained suspended material came into the basin and caused an increase in hemipelagic sedimentation rates by a factor of 5 or 6. Such an increase associated with decreasing grain-sizes has already been reported from P/E-boundary sections elsewhere and interpreted as an effect of a climate change at the level of the CIE, affecting the hydrological cycle and erosion (Schmitz et al., 2001).

Dinoflagellates

Information on the distribution of organic-walled dinoflagellate cysts in the Anthering section has previously been briefly published by Egger et al. (1997 and 2000), Heilmann-Clausen and Egger (2000) and Crouch et al. (2001). With results obtained during the present study the data can be summarized as follows. Common genera ans species occurring throughout the section are Apectodinium spp., Areoligera spp., Glaphyrocysta spp., Spiniferites spp., Polysphaeridium zoharyi, Homotryblium tenuispin osum, Operculodinium centrocarpum, and Phthanoperidinium crenulatum. Lingulodinium machaeorophorum occurs sporadically and is usually rare.

The overall composition of the dinoflagellate assemblages allows a simple subdivision of the section into three parts: The lower and upper intervals are characterized by generally low dominance and relatively high species richness. These two intervals are separated by a middle interval coinciding with the CIE (outcrops J and JA). There the genus Apectodinium which usually accounts for 5 % - 20 % of the dinoflagellate assemblages is dominant and reaches abundances up to 69 % in hemipelagic samples. The genus Apectodinium includes several intergrading species, which form a closely related group (Harland, 1979). In spite of the strong dominance, the species richness remains relatively high within the CIE interval. Quantitative dinoflagellate cyst data from hemipelagic layers at outcrop J reveal there is a ten-fold to forty-fold increase in the total number of cysts within the CIE interval (where Apectodinium dominates). Above the CIE, counts reveal fluctuations in cyst numbers with a general trend towards reduction, which parallel the declining...
percentages of Apectodinium. The total number of cysts is low in sample J4 from the CIE-interval, with dominant Apectodinium, but this sample is from a layer with a minimum in the TOC (Fig.6) which suggests increased oxygenation at this level. The Apectodinium percentages are increased in sample J26 (33 %) and J28 (62 %), but no data of absolute dinoflagellate abundances are available for these two samples.

Relying on information from modern cyst production (e.g. Dale, 1996), the Anthering Section must have been deposited below neritic waters, or waters which originated in the neritic zone. The genus Impagidinium, which is today purely oceanic, is present in several samples (especially in outcrop N), but usually rarer than 1-2 %. Such low occurrences indicate the neritic/oceanic boundary interval (Dale, 1996). It should be noted that the boundary between neritic and oceanic waters today does not strictly follow bathymetry and presence of neritic waters need not conflict with the interpretation of the depositional environment at Anthering being an abyssal basin floor (Egger et al., 2000a). It is also well known that neritic cysts are today transported over long distances with currents, and are deposited in various basinal parts of the Atlantic Ocean (e.g. Dale, 1996).

The continuous presence of Polysphaeridium zoharyi and Homotryblium tenuispinosum is evidence of a rather constant, and significant, mixing of the water masses at Anthering. Polysphaeridium zoharyi today mainly characterizes equatorial lagoons (Dale, 1996), and the extinct Homotryblium is a dominant form in several well-documented inner neritic, probably lagoonal settings of various ages (e.g. Köthe, 1990; Brinkhuis, 1994; Dybkjær and Rasmussen, 2000; and personal observation of Heilmann-Clausen in the basal Oligocene Heide Sand, Belgium).

Siliceous plankton

Throughout the Anthering section the fossil remains of siliceous plankton (radiolaria, diatoms as well as rare ebridians and silicoflagellates) have been replaced by pyrite. Silica dissolution prior to this replacement, and damage caused by the pressure of pyrite crystals growing inside the shells, can make identification difficult. In particular, radiolarians are very poorly preserved and are all taxonomically indeterminate spheroidal or lenticular spumellarians (Christopher Hollis, oral communication). If pyrite fillings only are preserved, the outline and shape of diatom frustules can be recognized, but a specific and often generic determination is impossible. However, in the more robust frustules, even relatively fine pores and cribra covering the areolae are preserved, and thus allow species determination.

Most samples have diatom floras dominated by the taxa Paralia sulcata var. biseriata, Paralia sulcata var. crenulata, Coscinodiscus antiquus, and by species of the genera Auloplicata and Stephanopyxis. The recent relatives of the latter two genera occur in coastal-neritic as well as in oceanic environments. This may also be the case for the less common species of the genera Hemiallus (e.g. H. periperitus), Actinoptychus and Sceptrotrinis. Species of the genus Trochosoma, which are also rather rare, are considered to have been fully planktonic, whereas specimens of Craspedodiscus, Trinacria, Sheshukovia and Aulacodiscus probably indicate a coastal-neritic environment. Other genera can be considered to have been fully benthic, e.g. species of the genera Auliscus and Arachnodiscus in neritic assemblages, resting spores should be abundant, but in the studied samples only single specimens of resting spores were found. These belong to the form groups Xanthonpyxis, Pterofocea and Bicornis. As resting spores are most resistant to dissolution, their scarcity indicates that the encountered diatoms represent an oceanic assemblage (Fenner, 1994). The minor admixture of coastal and neritic species may have been caused by storm events that whirled up freshly deposited sediment in shallow regions which thereafter settled out from suspension beyond the shelf edge. The occurrence of Craspedodiscus spp. and Trinacria spp. in deep-water deposits at Anthering is highly remarkably as these genera are usually restricted to neritic environments. We can rule out redeposition of these specimens because in that case, resting spores and benthic species would have been redeposited in considerable amounts. This suggests that water-depth was not the limiting factor for the occurrence of Craspedodiscus spp. and Trinacria spp.. Probably, the preference of these genera for neritic settings was due to the higher level of dissolved nutrients in these areas.

Agglutinating foraminifera

Individual samples contain up to 65 species and more than 700 specimens agglutinated foraminifera. More than 90 species were identified and grouped into four morphogroup assemblages (tubular genera, infaunal passive deposit feeders, active deposit feeders, epifaunal active herbivores and omnivores). Distributional patterns of morphogroups of agglutinating foraminifera are related, or more or less directly, to food supply and food utilisation processes (Jones and Charnock, 1985).

At Anthering, tubular forms comprise the genera Nothia, Rhabdammina, Rhizammina, Psammosphaera and Bathysiphon. These typical “flint-type” elements have been interpreted as sessile suspension feeders (morphogroup A of Jones and Charnock). However, the ecological interpretation of some of these deep-sea genera is still under discussion (Gooday et al. 1997), e.g. the life habitat of Nothia has been re-interpreted as epibenthic detrivore (Geroch and Kaminski, 1992). Epifaunal and infaunal passive deposit feeders (morphogroup B1) comprise Saccammina, Psammosphaera, Hormosina, Hormosinella, Trochamminoides, Paratrochamminoides, Lituotuba, Hyperammina and Kalamopsis. Another epifaunal and shallow infaunal group of active deposit feeders (morphogroup B2) corresponds to the Ammodiscus - Glomospira assemblage of “Biofacies B” (Kuhl et al., 1989). It consists of the genera Ammodiscus, Glomospira and Rzhetakina. The B3 assemblage of epifaunal active herbivores and omnivores (Haplophragmoides, Trochammina s.l.) may be restricted to omnivores in this deep-sea environment. The C-morphogroup of infaunal forms (Gerochammina, Karrerulina, Reophax, Subreophax, Spiroplectammina) are negligible in the abyssal setting of the Anthering section. The genera Recurvoides and Thalmanammina were summarized as Recurvoides-assemblage. The microhabitat preferences of this
assemblage are questionable. In the Cretaceous „Hatteras Fauna” of the Fardes Formation in southern Spain it co-occurs with Glomospira and Ammodiscus, and might, therefore, be indicative of oxygen deficient conditions (Kaminski et al., 1999). In our samples we did not find this correlation because the highest percentages of the Recurvoides-assemblage occur in high diversity faunas without any indication of oxygen depletion. It is noteworthy, that the Recurvoides-assemblage usually forms more than 10% of the agglutinated faunas within nannoplankton zone NP9 whereas in zone NP10 this percentage is much lower.

The highest diversity and the highest abundance of agglutinated specimens occur in the lower part of the section (samples NF2 to LF1). These assemblages display balanced proportions of infaunal, epifaunal and suspension feeding species. The high diversity of these agglutinated faunas is seen as typical for oligotrophic, food-limited environments where the various microhabitats are fully occupied. Several taxa have their last occurrences in this part of the section: Ammodiscus cretaceus, Aschemocella cf. carpathica, A. grandis, Haplophragmoides horridus, H. suborbicularis, Hormosina trinitatensis, Karrerulina cf. conformis, Paratrochamminoides heteromorphus, P. multilobus, Recurvoides walteri, Remesella varians, Rzehakina complanata, R. epigona, R. fissistomata, Spiroplectammina cf. dentata, Spiroplectammina spectabilis, Thalmannammina n. sp., Thurammina papillata.

Further up-section (samples J85 to JaF1) impoverished faunas with a predominance of the genus Glomospira appear. This “Glomospira event” has been observed at numerous localities in the Tethys and northern North Atlantic (see Kaminski et al., 1996 for a review). Kaminski et al. (1989) speculated that the predominance of Glomospira indicates areas of high surface productivity that caused low-oxygen levels at the sea-floor. However, this assemblage occurs also in well oxidized sediments and, therefore, it may be opportunistic rather than an reliable indicator for high productivity (Galeotti et al., 2000; Kaminski et al., 1996). With the onset of the CIE, even this opportunistic assemblage disappeared and over a period of at least 180 000 years the benthic communities suffered severely from unfavorable habitat conditions.

Between samples HF2 to EF1 the majority of the hemipelagic layers have an organic carbon content between 0.14% and 0.17% (0.15% on average), but several black shale layers (up to 1.22% TOC) occur. This suggests periodic eutrophication of the sea water probably by volcanic ashfall as closely spaced bentonites were found in that part of the section (Egger et al., 2000a). The black shales are usually devoid of benthic foraminifera and contain common frambooidal pyrite indicating anoxic conditions (Egger et al., 1997). The agglutinating faunas of these layers are not as rich and diverse as those from further down the section. Glomospira glomerata has its first appearance in this part of the section. The faunal assemblage changed to a predominance of passive deposit feeders (B1-assemblage) and tubular genera (A-assemblage). These assemblages are dominant along the continental rises where bottom currents or distal turbidity currents occur (Kaminski et al., 1996). In the uppermost part of the Anthering section (samples DA64a to BF1) a strong increase in the number of species and specimens of the DWAF, with relatively balanced assemblages, occurs indicating the return of ecological conditions similar as those at the base of the section.
Stop 3 Frauengrube Section near St. Pankraz
Hans Egger, Claus Heilmann-Clausen
Topic: Erosional unconformity between the Thanetian and Ypresian
Tectonic unit: South Helvetic nappe complex (European Plate)
Lithostratigraphic unit: Kressenberg Formation, Fackelgraben Member, Frauengrube Member
Chronostratigraphic units: Thanetian, Ypresian
Biostratigraphy: Calcareous Nannoplankton Zones NP9 and NP12
Location: Frauengrube Quarry
Coordinates: 47° 56´ 11" N, 013° 00´ 06" E
References: Egger et al., 2009b, Rasser & Piller, 1999 and 2001

In the Haunsberg area, the Frauengrube section and the immediately adjoining Kroisbach section are both part of the South Helvetic nappe complex. The base of the succession is a grey mica-bearing marlstone of the Maastrichtian Gerhartsreit Formation, which is overlain by silty claystones and clayey siltstones of the Paleocene Olching Formation. Detailed nannoplankton studies at the Cretaceous/Paleogene-boundary indicate continuous sedimentation across the boundary, since the uppermost Maastrichtian (Micula prinsii Zone) and the lowermost Paleocene (Markalius inversus Zone) have been discovered (Stradner, pers. comm. 2005). Around the boundary, the amount of terrestrially-derived sediment input strongly increases at the expense of carbonate. This shift in the lithological composition defines the lithostratigraphic boundary between the Gerhartsreit and Olching formations.

Fig. 18 Lithologic log of the Paleogene of the South Helvetic succession in Salzburg

The Olching Formation is overlain by the Kroisbach Member of the Kressenberg Formation. This member is characterized by glauconite-bearing quartz-sandstones with abundant brachiopods (Crania austriaca Traub) in the lower part and oysters (Pycnodonte spp.) in the upper part. The glauconitic matrix of the oyster-beds contains...
calcareous nannoplankton of the Upper Thanetian Heiliolithus riedelii Zone (NP8) and very well preserved pollen and spores (Stradner, in Gohrbandt, 1963; Kedves, 1980; Draxler, 2007). The Kroisbach Member is overlain by the rhodolithic limestone of the Fackelgraben Member (Figs. 18 and 19). Samples from thin intervening marlstone layers in the upper part of this member contained poorly preserved calcareous nannoplankton of the Discoaster multiradiatus Zone (NP9), of latest Paleocene age: Chiasmolithus sp., Coccolithus pelagicus, Discoaster falcatus, Discoaster multiradiatus, Discoaster mohleri, Fasciculithus tympaniformis, Neochiastozygus perfectus, Thoracosphaera sp., Toweius callosus, Toweius pertusus. Reworking of Cretaceous species has not been observed.

The Kroisbach Member is overlain by the rhodolithic limestone of the Fackelgraben Member (Figs. 18 and 19). Samples from thin intervening marlstone layers in the upper part of this member contained poorly preserved calcareous nannoplankton of the Discoaster multiradiatus Zone (NP9), of latest Paleocene age: Chiasmolithus sp., Coccolithus pelagicus, Discoaster falcatus, Discoaster multiradiatus, Discoaster mohleri, Fasciculithus tympaniformis, Neochiastozygus perfectus, Thoracosphaera sp., Toweius callosus, Toweius pertusus. Reworking of Cretaceous species has not been observed.

Fig. 19 Image of a thin section of rhodolithic limestone with Discocyclina sp. (Fackelgraben Member)

The Fackelgraben Member and the overlying Frauengrube Member are separated by an irregular erosional surface (Fig. 20), that has been described previously from other outcrops in the Salzburg area (Vogeltanz, 1977). Clasts of the Fackelgraben Member are reworked in the basal part of the Frauengrube Member (Rasser and Piller, 2001), which comprises 0.5 m of brownish sandstone with a marly matrix, that contains poorly preserved calcareous nannoplankton. Reworked species from the Campanian and Maastrichtian make up about 5% of the nannoplankton assemblage (Arkhangelskiella cymbiformis, Broinsonia parca, Cribrosphaerella ehrenbergii, Cyclagelosphaera reihardtii, Eiffelliithus eximius, Markalus inversus, Micula staurophora, Prediscosphaera cretacea, Watznaueria barmesae). The rest of the species observed have their first occurrence during the Paleocene (Campylosphaera eodelae, Chiasmolithus bidens, Chiasmolithus consuetus, Chiasmolithus danicus, Coccolithus pelagicus, Discoaster barbadiensis, Discoaster multiradiatus, Thoracosphaera sp., Toweius spp.) or in the lower Eocene (Neochiastozygus junctus, Pontosphaera versa, Pontosphaera duocava, Rhabdosphaera solus, Transversopontis pulcher, Zygrhablithus bijugatus). Unfortunately, no marker species of the lowermost Eocene, in particular of the Rhomboaster-Tribrachiatus lineage, have been encountered in our samples. However, Tribrachiatus orthostylus (Type B = without bifurcated rays) has been described from the base of the Frauengrube Member from another outcrop in the Haunsberg area (Stradner in Gohrbandt, 1963b). This finding indicates that the onset of the transgression did not take place before the Discoaster binodosus Zone (NP11).
Beside calcareous nannoplankton, the samples from the base of the Frauengrube Member contain marine and terrestrial palynomorphs. The terrestrial flora indicates a subtropical to tropical climate containing Sapotaceae and Matixiaceae pollen among other floral elements (Dictyophyllidites sp., Pityosporites sp., Nudopollis sp., Subtriporopollenites sp., Cupuliferoidaepollenites liblarensis). Palm pollen have not been found (Draxler, pers. comm. 2006).

The marine flora contains very similar, relatively well preserved dinoflagellate assemblages dominated by Homotryblium tenuispinosum ("tasmaniense-type"), Polysphaeridium Zoharyi and Apectodinium spp. (excluding A. augustum). The three taxa are equally common, and together are estimated to constitute 60-90% of the dinoflagellate assemblages. Of relevance for age-determination is the occurrence of the Areoligera undulata – A. sentosa group (present in each sample), Glaphyrocysta cf. semitecta (samples 1 and 3), Deflandrea oebisfeldensis (2 specimens in sample 1) and Phthano peridinium cf. echinatum (1 or 2 specimens in sample 1). In addition to these taxa, the samples also include low abundances of several long ranging taxa without stratigraphic value. Spiniferites spp. and peridinioids, apart from Apectodinium, are rare.

The Areoligera undulata – A. sentosa group, Glaphyrocysta cf. semitecta and Phthano peridinium cf. echinatum were not recorded in the Anthering Formation at Anthering, from where dinoflagellates were previously studied (Egger et al., 2000; 2003). This suggests a younger age for the Frauengrube Member. The Areoligera undulata – A. sentosa group is probably of inner neritic-lagoonal origin and has previously been recorded in the Lutetian in southern England (Eaton 1976; Bujak et al. 1980). Little is known about its stratigraphical distribution elsewhere. The several specimens of Glaphyrocysta (cf.) semitecta are very close to, but perhaps not identical with Glaphyrocysta semitecta, a taxon previously recorded from NP15 to near the Eocene/Oligocene boundary in NW Europe (e.g. Bujak et al. 1980; Heilmann-Clausen and Van Simaeys 2005). Nothing else in the samples suggests such a young age. The abundance of Apectodinium points to an age no younger than the Ypresian-Lutetian transition, most likely early Ypresian or older. The two specimens of Deflandrea oebisfeldensis also point to an early Ypresian or older age, as this form becomes extinct in the lower Ypresian in NW Europe (probably in or near top of NP11, e.g. Heilmann-Clausen and Costa 1989; Luterbacher et al. 2004).

In summary, the calcareous nannoplankton and dinoflagellate assemblages of the Frauengrube section indicate an erosional gap across the P/E-boundary, spanning the upper part of zone NP9, the entire zone NP10, and at least a large part of zone NP11.
Stop 4 Wimmern Section
Topics: Transgression of the Adelholz Formation on the Gerhardtsreit Formation
Tectonic unit: North Helvetic Nappe Complex (European Plate)
Lithostratigraphic units: Adelholz Formation, Gerhardtsreit Formation
Chronostratigraphic units: Maastrichtian, Lutetian
Biostratigraphy: Calcareous nannoplankton Sub-Zones NP15a and NP15b
Location: Outcrops near Wimmern
Coordinates: 47° 52’ 09” N, 012° 49’ 57” E
References: Egger, H. et al. (2011)

At Wimmern (Fig. 21), the Maastrichtian is overlain by 4 m thick glauconite rich sand of the lower Adelholzen beds (Fig. 22). Poorly preserved calcareous nannoplankton assemblages from the basal 50 cm of the sand contain Chiasmolithus grandis, Chiasmolithus solitus, Cyclicargolithus floridanus, Nannotetrina cristata, and Sphenolithus spiniger, indicating calcareous nannoplankton Sub-Zone NP15a at the base of the Adelholzen beds. Chiasmolithus gigas, the index species for Sub-Zone NP15b has its first occurrence 4 m above the transgressional surface and is still present at the top of the section (7.5 m above the transgressional surface). Sub-Zone NP15b is presented by marlstone containing high numbers of larger foraminifera and foraminiferal limestone.
The poor preserved planktonic foraminiferal assemblage from the glauconitic sand at the base of the section yields Acarinina coalingensis, A. esnehensis, A. interposita, Igorina broedermanni, and Pseudohastigerina wilcoxensis. Fifty centimetres above the transgression Acarinina bullbrooki, A. cuneicamerata, and Pseudohastigerina micra have their first occurrences. The assemblage suggests an assignment to planktonic foraminiferal Zone E7 in the zonation scheme of Wade et al. (2011).

The age of the transgression of the Adelholzen beds (which is called Bürgen Formation in Switzerland) is equivalent to the age of the transgression of the Lutetian at the Lutetian stratotype (St. Leu d’Esserent in the Paris Basin) where Aubry (1991) attributed the base of the type Lutetian to calcareous nannoplankton Subzone NP14b. Contrary to previous opinions (e.g. Hagn et al., 1981), this suggests that the North-Helvetic domain was affected by an eustatic sea-level rise in the Lutetian and not by tectonic subsidence.
Stop 5 Goppling section

Topics: Cretaceous-Paleogene transition in an active tectonic deep-water setting. Slope basin formation on the bathyal to abyssal southern slope of the European Plate.

Tectonic unit: Ultrahelvetic Nappe Complex (European Plate)

Lithostratigraphic units: Buntmargelsérie, Achthal Formation (type locality)

Chronostratigraphic units: Upper Maastrichtian to Ypresian

Biostratigraphy: Calcareous nannoplankton Zones CC26 to NP11

Location: Stecherwald southwest of Teisendorf

Coordinates: 47° 50´ 51” N, 012° 47´ 42” E (base of the section)

References: Egger, H. & Mohamed, O. (2010)

The type area of the Achthal Formation is the forest ("Stecherwald") southwest of Teisendorf. The base of the composite type section of the Achthal Formation (Goppling section) is located in creek 3 ("Gopplingbach"), ca. 15 m south of the hiking trail bridge. Further up-stream the Danian, Selandian and lower Thanetian all show excellent exposures, which end at the hamlet of Goppling. The upper Thanetian is seen only in small and poor exposures, in the two gullies east of creek 3 (Fig. 23). The Eocene part of the section is well exposed along creek 4, with the first outcrop ca. 20 m downstream from the hiking trail (coord. E 012° 48´ 02”, N 47° 50´ 48”).

The lithostratigraphic term “Achthaler Sandstein” dates back to Gümbel (1862, p.616). Although Schlosser (1925, p.167) mentioned a Thanetian macrofauna from this unit (“Achthaler Grünsand”), it can be assumed that these fossils originated from the tectonically neighbouring shallow-water deposits of the South-Helvetic thrust unit. Ganss and Knipscheer (1956) report on Paleocene foraminifera faunas and interpreted the outcrops as a special facies (Teisendorf facies) of the Helvetic sedimentation area. Hagn (1960 and 1967) recognized the deep-water character of the deposits and assigned them to the southern part of the Ultrahelvetic sedimentation area, which interpretation is adopted by Egger & Mohamed (2010), who introduced the term “Achthal Formation” for the deep-water turbidite succession.

![Fig. 23 Sketch map of the area investigated. Numbers indicate the most important creek sections mentioned in the text.](image-url)

The base of the Achthal Formation (coord. E 012° 47´ 42”, N 47° 50´ 51”), which conformably overlies the Buntmargelsérie, is defined by the onset of turbiditic sedimentation in the uppermost Maastrichtian. The stratigraphic top is unknown because of the tectonic truncation of the Goppling section. However, deposition of the Achthal Formation probably ended in the Ypresian because grey calcareous marlstone of early Lutetian age occurs in the Ultrahelvetic thrust unit at Mattsee in Austria (Rögl and Egger, 2010), only ca. 25 km northeast of Teisendorf.

The deep-water system of the Achthal Formation is interpreted to have initially filled a slope depression lying above a subsiding basement fault block. Initial subsidence occurred in the latest Maastrichtian and continued into the early Paleogene. Synsedimentary tectonic activity was the primary control on the depositional evolution of the slope-basin.

In the forest south of Teisendorf and Oberteisendorf, a number of small creeks have created excellent exposures of the Achthal Formation. Almost all such outcrops lie to the south of the hiking trail running between the two villages. For better orientation, the more important creeks have been numbered (Fig. 23). The Ultrahelvetic nappe complex in the area is composed of three tectonic slices exposing beds continuously dipping to the southeast.
During the field trip we will see part of the ca. 320 m thick sedimentary succession of the Goppling slice, which comprises Maastrichtian to lower Eocene deposits (Fig. 24).

Fig. 24 Composite log of the Achthal Formation in the type area
Fig. 25 - Calcareous nannoplankton from the Goppling section.

STRATIGRAPHIC FRAMEWORK OF THE GOPPLING SECTION

Maastrichtian
The basal part of the Goppling section is formed by ca. 50 m of bioturbated red clayey marlstone, which is assigned to the Buntmergelserie. The top of this red-bed succession is exposed in creek 3 ("Goppling creek"), immediately south of the hiking trail bridge. There, the marlstone contains 19 wt% carbonate. The nannoplankton assemblages are dominated by Micula staurophora, whereas all other species are rare and most specimens are preserved only as fragments. Apart from Lithraphidites quadratus, the zonal marker for the upper Maastrichtian Zone CC25, Arkhangelskiella cymbiformis (Fig.25/20), Cyclagelosphaera reinhardtii (Fig.25/22), Effelliithus turriscelli, Micula staurophora, Prediscosphaera cretacea, Retecapsa crenulata, and Watznaueria barnesae occur. At the top of the red marlstone outcrop, small specimens of Ceratolithoides cf kamptneri were observed (Fig.25/21), indicating already Zone CC26.

Two samples for foraminifera studies were taken from the red marlstone at the outcrop in creek 3 outcrop. The assemblages consist essentially of a rich agglutinated fauna and a small number of calcareous benthic species. Very small planktic species were found only in one sample and display excellent grain-size sorting suggesting reworking by current activity.

Predominant dissolution-resistant species in the calcareous nannoplankton assemblages and the composition of foraminifera assemblages indicate sedimentation of the Maastrichtian red clayey marlstone in a deep-water environment. The absence of an authochthonous planktic fauna indicates deposition below the foraminiferal lysocline, where all planktic foraminifera are dissolved (Berger, 1970). Below the lysocline and above the calcite compensation depth (CCD) calcareous nannoplankton form coccolith ooze, because in spite of their small size, some coccoliths are more dissolution-resistant than foraminifera (see Hay, 2004, for a review).

In the latest Maastrichtian (Micula prinsii-Zone), rapid subsidence brought the Ultrahelvetic sea-floor to below the CCD. The red marlstone transitionally passes into ca. 5 m of grey marlstone with intercalated thin carbonate-cemented parallel-laminated turbiditic siltstone and sandstone beds. The best outcrop of these rocks was found in creek 2 about 10 m south of the hiking trail. In the lower part of this outcrop, carbonate values of three samples (TS2/09, TS7/09 and TS9/09) range between 20.8 wt% and 21.5 wt%. In the upper part carbonate values decrease to 9.4 wt% (TS10/09) and finally to less than 2 wt% (TS12/09, TS13/09 and TS14/09). Dinoflagellate cyst assemblages indicate a Maastrichtian age of the claystone as in the uppermost sample Dinogymnium acuminatum occurs (Fig.26/1), which does not cross the K/Pg-boundary (e.g. Stover et al. 1996).

Associated with this regional subsidence along the southern continental margin of the European Plate, was the onset of turbidite sedimentation. Turbidity currents running parallel with the strike of the slope indicate an opposing topographic high, which caused deflection of the down slope sediment transport (Kneller and McCaffrey, 1999). Subsidence of the sea-floor associated with the deposition of sediment-gravity flows and the coeval generation of a sea-ward bounding topographic high suggest the formation of an intra-slope basin on subsiding crustal fault blocks.

Tab. 2 Distribution of dinoflagellate taxa in the Goppling section. The arrangement of taxa is according to the first occurrence and alphabetic order. Key dinoflagellate species are shaded.

Danian and Selandian deposits are almost continuously exposed in the Goppling creek gully. Due to the carbonate depletion, no calcareous plankton could be found in the siliciclastic succession, although dinoflagellate assemblages of samples Ach1/09 and Ach2/09 (see Tab.2 and Fig.27/6, 8 and 9) contain Carpatella cornuta, Damassadinium californicum and Senoniasphaera ornata, which have their first appearance date in the early Danian. Palynomuninum grallator (Fig.6/5 and 6) has its highest occurrence in the lowermost Danian planktonic foraminiferal Zone P1a (Habib et al., 1996; Dam et al., 1998; Brinkhuis et al., 1998). The samples were taken at the base (Ach1/09) and top (Ach2/09) of the same outcrop. Consequently, this outcrop can be assigned to Zone P1a in the zonation of Berggren et al. (1995).

The Danian shows a two-fold lithological subdivision. The 30 m thick lower part is dominated by thin-bedded (< 40 cm) parallel-laminated sandstone turbidites, that rarely show thin capping mudstone. In contrast to the Maastrichtian turbidites, the Danian ones are not calcite cemented and do not contain carbonate at all. They are fine-grained (grain diameters up to 0.2 mm), show clast supported fabrics, and have a quartzarenitic composition. Beside quartz (ca. 90 % of the grains), feldspar, chert and glauconite occur as components. Freimoser (1972) noted that the heavy mineral assemblages of these Paleocene sandstones are essentially composed of zircon, tourmaline and rutile (together about 90 % of the assemblage). Hemipelagic claystone between the turbidite beds
is rare and when present only a few millimeters thick indicating that (1) turbidity currents entered the basin with a high frequency and (2) deposition took place below the local CCD.

In the 40 m thick upper part of the Danian, hemipelagic layers are common and often display red colors. Packages of red hemipelagic claystone contain thin base truncated turbiditic siltstone to sandstone beds. These packages are separated by single thick (>0.5 m) medium to coarse-grained sandstone beds showing grain diameters up to 1.0 mm. As in the lower Danian, only K-feldspar components can be observed and plagioclase is entirely absent. The beds are either massive or show stratification defined by 2-5 cm thick laminae. Graded (Ta) and parallel laminated (Tb) Bouma divisions form the major parts of these beds. Small-sized terrestrial plant remnants are commonly concentrated in horizontal Td-layers near the top of the beds and indicate a derivation of the turbidite material from land areas. Submarine erosion is evidenced by flute casts, which indicate sediment transport predominantly from the west, parallel to the approximately east-west trending slope.

One sample (Ach3/09) of the red claystone was studied for dinoflagellates but contained only Areoligera senonensis, which has a range from the Cretaceous to the Paleogene. Together with the last red hemipelagites, grey turbiditic clayey marlstones occur, containing strongly corroded nannoplankton assemblages. Beside substantial admixtures of Cretaceous species, Chiasmolithus danicus, Cruciplacolithus tenuis, Coccolithus pelagicus and Toweius spp. are indicative for the Danian (Chiasmolithus danicus Zone, NP3). However, the absence of Ellipsolithus macellus, the zonal marker for Zone NP4, might only be a consequence of the poor preservation in this sample.

Selendian

About 10 m up-section from the above mentioned Danian sample, nannoplankton assemblages contain Fasciculithus tympaniformis, the zonal marker for the calcareous nannoplankton Zone NP5 of earliest Selendian age. With the disappearance of red hemipelagites the discrimination between turbiditic and non-turbiditic rocks becomes difficult. Single turbidites show a distinct pelitic component (Bouma Td) in this part of the Goppeling section, with approximately the same thickness as the sandy part of the turbidite. This turbiditic mudstone only occasionally contains carbonate. In most cases it is devoid of carbonate and displays the same grey color as the supposed hemipelagic mudstone.

The Selendian, which forms the morphologically steepest part in the course of creek 3, is composed of a ca. 25 m thick thickening and coarsening upward succession. In the lower part of this succession decimeter-scale turbidites occur. Continuing up the exposure, the bed thicknesses gradually increase up to 1.5 m at the top of the succession. These sandstone beds are the thickest beds in the entire Achthal Formation and do not display turbiditic mudstone. In part, they contain intraformational mudstone clasts with diameters up to 0.2 m. Flute casts indicate paleotransport from west to east and thus an orientation parallel to the trend of the paleoslope.

Thanetian

In spite of excellent exposures along creek 3, the boundary between the Selendian and Thanetian is difficult to fix precisely due to carbonate depletion and the lack of calcareous plankton. Ca. 20 m downstream from the confluence in the uppermost part of creek 3 (Fig. 23), Fasciculithus billii is indicative for the upper part of Zone NP5. From here on upstream, a ca. 40 m thick part of the section is characterized by abundant olive-green strongly bioturbated „spotty“ claystone. Probably, the majority of the oval spots in these hemipelagic deposits represent cross sections of the trace fossils Planolites and Thalassinoidea (Uchman, 1999). Thalassinoidea isp. and a strongly fragmented specimen of ?Scolica strozzii were found also as semi-reliefs at the base of turbidite beds (Fig.28/4, 5 and 6).
The turbidites intervening with the claystone are mostly thin bedded and occasionally display substantial amounts of glauconite, resulting in green rock colors. Glauconite was deformed during burial and flowed around adjacent quartz grains. This is indicated by the patchy distribution of glauconite-filled areas, which are much larger than normal pores.

Some beds show a lenticular shape. The orientation of paleoflow indicators (flute casts and erosional channels) suggest paleotransport from north to south, following the gradient of the south-facing paleoslope. Discoaster moheri (Fig.25/12) indicative of Thanetian zone NP7, was found in the eastern branch of creek 3, about 50 m upstream from the confluence with the western branch (Fig.23). Discoaster multiradiatus (Fig.25/11), the zonal marker of Zone NP9, was found in the uppermost part of the western branch.

Ypresian
The Ypresian of the Goppling section shows a two-fold lithological subdivision. The lower part consists of a ca. 50 m thick succession of decimeter-scale turbiditic sandstone and siltstone beds alternating with red colored marly claystone. The latter rock is often bioturbated and probably represents hemipelagic non-turbiditic material. As its carbonate values range between 4 wt% and 8 wt%, sedimentation slightly above the CCD can be assumed.
Samples containing Rhomboaster cuspis (Fig.25/6 and 7) were found in the lower part of creek 5, about 20 m to the north of the hiking trail. R. cuspis has its first appearance date at the Paleocene/Eocene-boundary, which is situated in the upper third of Zone NP9. About 25 m to the south of the hiking trail, Tribrachiatus digitalis (Fig.25/2) occurs, the marker fossil of sub-Zone NP10b in the refined zonation scheme of Aubry (1992). About 15 m further up-section, another outcrop of the red bed facies occurs and provided Tribrachiatus orthostylus (Fig.25/1), whereas T. contortus, which has its highest occurrence at the NP10/NP11-boundary is absent. Therefore these samples can be assigned to the lower part of NP11 (Discoaster binodosus-Zone). Thus, in summary, the red bed facies encompasses the upper part of NP9 to the lower part of NP11.

Along strike to west, red beds containing R. cuspis were found in the upper part of creek 4. These deposits are separated by a fault from the underlying part of the succession in creek 4. In this gully, the topographically lowest outcrops lie just down-stream the hiking trail. T. orthostylus with pointed rays (Fig.25/1) co-occurs with Chiasmolithus bidens, Coccolithus pelagicus, Discoaster barbadiensis, D. multiradiatus, Ellipsolithus macellus and Sphenolithus primus. Whereas the robust and dissolution resistant Tribrachiatus specimens may be common in the samples, the other species, in particular the discoasterids, are exceedingly rare due to dissolution. Carbonate values of two samples from this outcrop were 4.2 wt% and 4.8 wt%.

A few meters up-stream from the hiking trail the red bed facies in creek 4 shows a sharp sedimentary contact to an overlying ca. 60 m thick sand-rich and thin-bedded turbidite succession that displays only rare and very thin carbonate depleted hemipelagic layers. This suggests that the upper part of the Ypresian succession was deposited below the CCD and hence another subsidence pulse can be assumed. This interpretation is supported by the orientation of flute casts, which indicate paleoflow directions from west to east.

This part of the Goppling section commonly contains trace fossils (e.g. Paleodictyon majus and Scolicia prisca, see Fig.28/2 and 3). According to Uchman (1999) the ichnogenus Paleodictyon probably reflects a moderate shortage of food. These generally oligotrophic conditions were interrupted by periodic accumulation of organic detritus (e.g. plant detritus) by turbidity currents. These more eutrophic episodes favored the ichnogenera Ophiomorpha and Scolicia. In the Rhenodanubian Group (Egger and Schwerd, 2008) of the adjacent abyssal Penninic basin, the ichnogenera Ophiomorpha, Paleodictyon and Scolicia are known exclusively from the Greifenstein Formation of Eocene age (Uchman, 1999).

Depositional evolution

Due to the lack of information about the three-dimensional geometry of the basin-fill, the scale and shape of this basin is unknown. It can be assumed that it was a narrow elongate, structurally controlled depression where tectonic activity was the primary control on sedimentation. Presumably, this confined basin was too small for the development of a large-scale deep-sea fan. Instead a channelized deep-water system could be expected, with the bounding slopes of the basin acting as channel walls (Fig.29). Gravity-induced flows entering a sub-basin drop their sediment load and prograde across the depression forming a thickening and coarsening upward succession (Anderson et al., 2006; Shultz and Hubbard, 2005).
At the front of this prograding lobe-like body the thin-bedded sand-rich turbidite succession of early Danian age was deposited (e.g. Crabaugh and Steel, 2004). The lack of muddy tops can be interpreted as an effect of flow-stripping of the fine-grained component of the turbidity currents (e.g. Piper and Normark, 1983; Sinclair and Tomasso, 2002). This indicates that during this early stage of basin evolution, the confining sill was still low. Hence it could be surmounted by the lower-density fraction of the turbidity currents, while the coarse-grained higher density portions of the flows were deflected and preserved upstream of the barrier. The rare and thin hemipelagites indicate the existence of high-frequency trigger mechanisms (e.g. earthquakes) for turbidity currents during the onset of basin formation.

In a conventional fan model, the upper Danian packages of thin-bedded turbidites and red hemipelagic mudstone, which are separated by single thick sandstone beds, can be interpreted as interchannel deposits. In such a model, the thin-bedded turbidites are thought to result from low-density currents overflowing adjacent active channels, while the thicker beds are explained as the result of crevasses in the channel levee, which let high density turbidity currents (Lowe, 1982) escape to the basin floor (e.g. Mutti, 1977). This model implies the existence of subordinate fairways within the slope-basin.

Alternatively, the upper Danian facies can be seen as the result of an episode of comparatively tectonic quiescence. Siliciclastic material accumulated at the shelf edge over time and larger turbidity currents triggered by earthquakes or gravity load entered the slope-basin with low periodicity. This is indicated by the common occurrence of intervening hemipelagic red claystone as their deposition indicates very low sedimentation rates. The lack of muddy tops of the thick-bedded turbidites can again be explained as a result of flow-stripping as flow thickness was determined as the primary control of the run-up distance of a turbidity current onto the opposing slope (Muck and Underwood, 1990). It is assumed, that high-density currents (Lowe, 1982) lost their fine-grained
component by down-spill, so that only their coarse-grained material is preserved in the sub-basin. Low-density currents had not the potential to surmount the bounding slope and remained completely in the sub-basin. Increased subsidence at the end of the Danian caused ponding of the turbidity currents, which display a distinct pelitic component. However, sedimentation rates quickly outpaced subsidence rates and deposition reduced the relief sufficiently to allow spill down-slope. The filling up of the basin to the spill-point is indicated by downslope paleotransport directions in the upper Selandian and Thanetian. Due to the gradient reduction in the area of the former basinal structure turbidites were deposited on this flat surface and the ca. 95 m thick basin-fill succession of Danian and Selandian age became buried by slope deposits developing into a healed slope (e.g. Smith, 2004).
References

Egger H., Lobitzer, H., Polesny, H. and Wagner, L.R., 1997. Trip#1 - Cross section through the oil and gas-bearing Molasse basin into the alpine units in the area of Salzburg, Austria-Bavaria). Guidebook Aapg International Conference and Exhibition, 104p.

Frisch, W., 1979. Tectonic progradation and plate tectonic evolution of the Alps. Tectonophysics 60, 121-139.

